Toposes Are Cohomologically Equivalent to Spaces

نویسندگان

  • A. JOYAL
  • I. MOERDIJK
چکیده

Please be advised that this information was generated on 2017-02-10 and may be subject to change.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Every Grothendieck Topos Has a One-way Site

Lawvere has urged a project of characterizing petit toposes which have the character of generalized spaces and gros toposes which have the character of categories of spaces. Étendues and locally decidable toposes are seemingly petit and have a natural common generalization in sites with all idempotents identities. This note shows every Grothendieck topos has such a site. More, it defines slante...

متن کامل

Arithmetic universes and classifying toposes

The paper uses structures in Con, the author’s 2-category of sketches for arithmetic universes (AUs), to provide constructive, base-independent results for Grothendieck toposes (bounded S-toposes) as generalized spaces. The main result is to show how an extension map U : T1 → T0 can be viewed as a bundle, transforming base points (models of T0 in any elementary topos S with nno) to fibres (gene...

متن کامل

A characterization of sheaf-trivial, proper maps with cohomologically locally connected images

Let f : X-, Y be a proper surjection of locally compact metric spaces. Throughout, the Leray sheafs of f are assumed to be (locally) trivial either in all dimensions or through a given dimension. Using a spectral sequence, the cohomological local connectivity of Y is analyzed and thus characterized by the structure of f. We define f to be cohomologically locally connected if, for each y E Y, ne...

متن کامل

Path-lifting for Grothendieck Toposes

A general path-lifting theorem, which fails in the context of topological spaces, is shown to hold for toposes, for locales (a slight generalization of topological spaces), and hence for complete separable metric spaces. This result generalizes the known fact that any connected locally connected topos (respectively complete separable metric space) is path-connected. In [MW] we proved that every...

متن کامل

Van Kampen theorems for toposes

In this paper we introduce the notion of an extensive 2-category, to be thought of as a “2-category of generalized spaces”. We consider an extensive 2-category K equipped with a binary-product-preserving pseudofunctor C : K op → CAT, which we think of as specifying the “coverings” of our generalized spaces. We prove, in this context, a van Kampen theorem which generalizes and refines one of Bro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017